
ELSEVIER

Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

Phospholipase A_2 -derived lysophosphatidylcholine triggers Ca^{2+} entry in dystrophic skeletal muscle fibers

François-Xavier Boittin a,*, George Shapovalov b, Carole Hirn b, Urs T. Ruegg b

^a Department of Zoology and Animal Biology, Laboratory of Vascular Cell Physiology, University of Geneva, CH-1211 Geneva 4, Switzerland

ARTICLE INFO

Article history:
Received 9 November 2009
Available online 13 November 2009

Keywords:
Dystrophic skeletal muscle fibers
Store-operated channels
Ca²⁺-independent phospholipase A₂
Lysophosphatidylcholine

ABSTRACT

Duchenne muscular dystrophy is an inherited disease caused by the absence of dystrophin, a structural protein normally located under the sarcolemma of skeletal muscle fibers. Muscle degeneration occurring in this disease is thought to be partly caused by increased Ca^{2+} entry through sarcolemmal cationic channels. Using the Mn^{2+} quench method, we show here that Mn^{2+} entry triggered by Ca^{2+} store depletion but not basal Mn^{2+} entry relies on Ca^{2+} -independent PLA_2 (iPLA₂) activity in dystrophic fibers isolated from a murine model of Duchenne muscular dystrophy, the mdx^{5cv} mouse. iPLA₂ was found to be localized in the vicinity of the sarcolemma and consistently, the iPLA₂ lipid product lysophosphatidylcholine was found to trigger Ca^{2+} entry through sarcolemmal channels, suggesting that it acts as an intracellular messenger responsible for store-operated channels opening in dystrophic fibers. Our results suggest that inhibition of iPLA₂ and lysophospholipid production may be of interest to reduce Ca^{2+} entry and subsequent degeneration of dystrophic muscle.

© 2009 Elsevier Inc. All rights reserved.

Introduction

Duchenne muscular dystrophy (DMD) is a severe disease caused by the lack of dystrophin, a 427 kDa protein located under the plasma membrane [1]. Degradation of dystrophic muscle fibers in DMD is likely to be partly caused by excessive and sustained Ca²⁺ entry through the sarcolemma, which leads to increased proteolysis and muscle injury [2–5]. In fibers lacking dystrophin, Ca²⁺ entry is increased at rest, due to enhanced spontaneous cationic channel activity, and is further increased during muscle activity [5–8]. Indeed, recent studies indicate that both store-operated channels activated upon Ca²⁺ store depletion and stretch-activated channels are involved in the enhanced Ca²⁺ entry occurring during dystrophic muscle activity [5,8].

Several hypotheses have been brought forward to explain the enhanced Ca²⁺ entry occurring at rest and during activity of dystrophic fibers. Local tears in the sarcolemma occurring during eccentric exercise may lead to local proteolytic activation of cationic channels, and result in increased Ca²⁺ entry [4]. The lack of dystro-

E-mail address: Francois.Boittin@unige.ch (F.-X. Boittin).

phin has also been proposed to be directly responsible for enhanced store-operated Ca²⁺ entry in dystrophic myotubes [9,10].

However, increased store-operated Ca²⁺ entry may also be explained by abnormal regulation of store-operated channels. Recent observations indicate that the sarcoplasmic reticulum Ca²⁺ sensor STIM1 is involved in the activation of store-operated channels, whose precise identity is still elusive but may involve Orai1 and/or members of the transient receptor potential channels (TRP) family in skeletal muscle [8,10,11]. Numerous reports also suggest that the Ca²⁺-independent isoform of PLA₂ (iPLA₂) is involved in the regulation of store-operated channels, and that lysophospholipids produced by this enzyme trigger opening of store-operated channels [12–14].

In intact dystrophic fibers from mdx^{5cv} mice, we have recently demonstrated that store-operated Ca^{2+} entry is regulated by iPLA₂, and that the overexpression of this enzyme is likely to be responsible for the enhanced store-operated Ca^{2+} entry [15].

Using the Mn²⁺ quench method, we show here that iPLA₂ is selectively involved in the regulation of divalent cation entry triggered by Ca²⁺ store depletion in dystrophic fibers from mdx^{5cv} mice, as inhibition of its activity did not alter basal Mn²⁺ entry. In accordance with these findings, we show using Ca²⁺ imaging and the patch–clamp technique that the PLA₂ product lysophosphatidylcholine (LPC) triggered Ca²⁺ entry through cationic channels exhibiting the same pharmacology as store-operated channels. This suggests that increased local production of LPC by iPLA₂ in the vicinity of store-operated channels triggers Ca²⁺ entry

b Laboratory of Pharmacology, Geneva-Lausanne School of Pharmaceutical Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland

Abbreviations: DMD, Duchenne muscular dystrophy; iPLA2, Ca^{2*} -independent phospholipase A_2 ; LPC, lysophosphatidylcholine; TRP, transient receptor potential channel

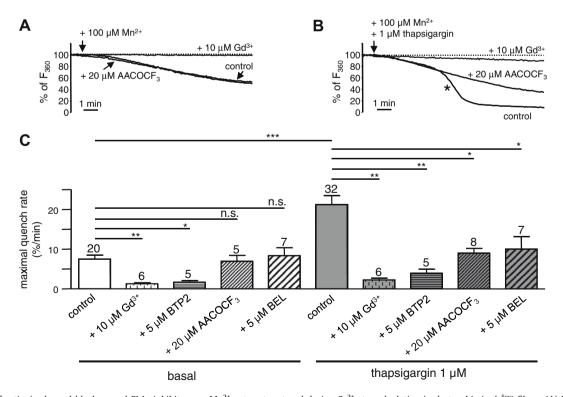
^{*} Corresponding author. Address: Department of Zoology and Animal Biology, Laboratory of Vascular Cell Physiology, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland. Fax: +41 22 379 33 40.

through these channels in dystrophic fibers. Altogether these results provide new insights to the regulation of Ca²⁺ entry into dystrophic muscle, and suggest that inhibition of iPLA₂, lysophospholipid production and action may be of great interest to reduce Ca²⁺ entry and downstream degeneration of dystrophic muscle.

Materials and methods

Cell preparation. Dystrophic (mdx^{5cv}) mice (3–4 months old) were killed by cervical dislocation. Flexor Digitorum Brevis (FDB) muscles were removed quickly, and fibers were isolated as previously described [15]. mdx^{5cv} skeletal fibers were used from 18 to 28 h after isolation.

 Ca^{2+} imaging and Mn^{2+} influx measurements. Intracellular Ca^{2+} concentration was monitored with the fluorescent Ca^{2+} indicator Fura-2AM (acetoxymethylester form of Fura-2, cell permeant), as previously described [15].


The $\rm Mn^{2+}$ quench technique was used to estimate divalent cation influx through the sarcolemma [7,15]. As $\rm Mn^{2+}$ has a similar permeability as $\rm Ca^{2+}$ through most plasma membrane $\rm Ca^{2+}$ channels, the quench of Fura-2 fluorescence when Fura-2 is excited at 360 nm allows estimation of $\rm Mn^{2+}$ entry through plasma membrane $\rm Ca^{2+}$ channels. Fibers were first loaded with Fura-2 as described above and $\rm MnCl_2$ (100 $\rm \mu M$) was added to the bath solution at the time indicated on records. As $\rm Mn^{2+}$ quenches Fura-2 fluorescence, $\rm Mn^{2+}$ influx through the sarcolemma triggers a decrease of the fluorescence of Fura-2 loaded cells excited at 360 nm (isobestic point of Fura-2). Records shown in Fig. 1 represent the decrease of Fura-2 fluorescence expressed as the % of $\rm F_{360}$ (initial fluorescence value of each single fiber was set to 100% after

background subtraction). For average data, Mn^{2+} entry was measured as the maximal quench rate of Fura-2 fluorescence for each fiber (in %/min). To measure Mn^{2+} entry triggered by Ca^{2+} store depletion, thapsigargin (1 μ M, an inhibitor of the sarcoplasmic reticulum Ca^{2+} ATPase) was added together with $MnCl_2$ (100 μ M).

In order to avoid artifacts due to contraction, fibers were incubated with the myosin ATPase inhibitor *N*-benzyl-*p*-toluene sulfonamide (BTS, 30 μ M) [16]. To avoid eventual influx through L-type voltage-gated Ca²⁺ channels, all experiments were performed in the presence of the L-type voltage-gated Ca²⁺ channel blocker nifedipine (1 μ M). Ca²⁺ transients or Mn²⁺ quench were measured in the whole perimeter of fibers. All experiments were carried out at room temperature (22 °C).

LPC or arachidonic acid was quickly applied to single cells by pressure ejection using a pinch valve pressurized perfusion system (ALA Scientific Instruments, USA) connected to a quartz micromanifold, with an output tip size of 100 μm . The micromanifold was mounted on a Leitz micromanipulator, to stimulate individual skeletal muscle fibers for the period indicated on records.

Immuno-staining. Isolated FDB fibers were stored in 8-well chamber slides (Lab-Tek) coated with Matrigel (400 μ g/ml, Collaborative Research). Fibers were fixed in PBS with 1.5% formaldehyde and permeabilized with 0.2% Triton X-100. After extensive washing, non-specific binding sites were blocked with goat serum. Fibers were incubated overnight at 4 °C with the rabbit anti-iPLA2 primary antibody (1/500, Cayman, USA). After extensive washing, fibers were incubated with anti-rabbit secondary antibody (1/1000) coupled to Alexa Fluor 488 for 1 h at room temperature. Fibers were mounted in Mowiol before observation with a Leica SP2 confocal microscope (equipped with a 40× oil immersion lens).

Fig. 1. Effect of cationic channel blockers and PLA₂ inhibitors on Mn²⁺ entry at rest and during Ca²⁺ store depletion in dystrophic (mdx^{5cv}) fibers. (A) Basal Mn²⁺ entry (expressed as the % of fluorescence for an excitation wavelength of 360 nm) following addition of 100 μM MnCl₂ in control and after preincubation with Gd³⁺ (10 μM, 5 min preincubation) or AACOCF₃ (20 μM, 10 min preincubation). (B) Mn²⁺ entry in mdx^{5cv} fibers following addition of 1 μM thapsigargin and 100 μM MnCl₂ in control and after preincubation with Gd³⁺ (10 μM, 5 min preincubation) or AACOCF₃ (20 μM, 10 min preincubation). The star indicates the delayed accelerated Mn²⁺ entry for the control experiment. (C) Plot of average maximal quench rates (in %/min) recorded upon Mn²⁺ or thapsigargin/Mn²⁺ addition in control conditions and in the presence of Gd³⁺, BTP2 (5 μM, 10 min preincubation), AACOCF₃ and BEL (5 μM, 20 min preincubation). Number of fibers tested (from five mdx^{5cv} mice) are indicated on top of the bars.

Patch-clamp recordings. Patch-clamp recordings were performed in excised inside-out patches at room temperature obtained on individual fibers isolated as described above. Fibers were immersed in a high KCl solution (in mM: 10 NaCl, 142 KCl, 2 MgCl₂, 0.2 CaCl₂, 5 glucose, 0.5 EGTA, 10 Hepes; pH 7.3) mimicking the intracellular salt composition with 2 μg/ml of cytochalasin D added to inhibit stretch-activated channels excitation by rearranging actin microfilaments upon patch excision [17]. The tested agents, 20 µM LPC and 100 µM arachidonic acid were added to this solution and cells were perfused utilizing a pinch valve free flow perfusion system (Bioscience tools, San Diego, CA, USA). In order to avoid fiber contractions induced by transferring them into high KCl solution, they were treated with 30 μM BTS for 15 min before being transferred into the recording chamber [16]. Patch pipettes were pulled from borosilicate glass WPI 1B100F-4 (World Precision Instruments, Stevenage, UK) on a horizontal puller P2000 (Sutter Instruments, Novato, CA, USA) and filled with a CaCl₂ solution (110 mM CaCl₂, 10 mM Hepes; pH 7.3) with 2 mM tetraethyl ammonium (TEA) and 20 μM 4,4'-diisothiocyanato-stilbene-2,2'disulfonic acid (DIDS) added to inhibit K⁺ and Cl⁻ currents. Under these conditions patch pipette resistances were in the range of 3–4 M Ω . After establishing the gigaohm seal and excising the patch into an inside-out configuration, 30 mV were applied to the outer surface of the patch membrane. Inward Ca²⁺ currents were acquired in a gap free mode and low-pass filtered at 1 kHz with a Multiclamp 700B amplifier and then digitized with a Digidata 1322 digitizer (Molecular Devices, Sunnyvale, CA, USA) at 5 kHz.

Chemicals. Arachidonyltrifluoromethyl ketone (AACOCF₃), [*N*-(4-[3,5-bis(trifluoromethyl)-1*H*-pyrazol-1-yl]phenyl)-4-methyl-1,2,3-thiadiazole-5-carboxamide] (BTP2), *N*-benzyl-*p*-toluene-sulfonamide (BTS) and thapsigargin were from Calbiochem. Collagenase type IA, bromoenol lactone (BEL) and lysophosphatidylcholine (LPC) were from Sigma. Fura-2AM was from Molecular Probes. Ethylene glycol-bis(2-aminoethyl)-*N*,*N*,*N*',*N*'-tetra acetic acid (EGTA), tetraethyl ammonium (TEA) and 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS) were from Fluka.

Statistics. Results are expressed as means \pm SEM. Significance was tested by means of Student's t test and p values of <0.05 were considered as significant.

Results

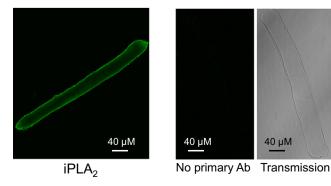
The $\rm Mn^{2+}$ quench method, $\rm Ca^{2+}$ imaging and patch–clamp measurements were used to investigate the role of iPLA₂ and its metabolites in regulating activity of cationic channels at rest and after $\rm Ca^{2+}$ store depletion in dystrophic ($\it mdx^{5cv}$) fibers.

Effect of $iPLA_2$ inhibition on Mn^{2+} entry at rest and upon Ca^{2+} store depletion

 Mn^{2+} entry at rest and following Ca^{2+} store depletion was measured in dystrophic (mdx^{5cv}) fibers using the Mn^{2+} quench method [7,15]. Fig. 1A shows a typical decrease of Fura-2 fluorescence due to basal Mn^{2+} entry, after addition of 100 μM Mn^{2+} to bath solution. Basal Mn^{2+} entry was strongly reduced when fibers were incubated with the cationic channel blockers Gd^{3+} or BTP2 [18] (from $7.48 \pm 1.03\%/min$ in control to $1.24 \pm 0.28\%/min$ and $1.66 \pm 0.45\%/min$ for Gd^{3+} and BTP2, respectively, Fig. 1A and C), indicating that these blockers inhibit basal Mn^{2+} influx occurring through cationic channels.

Thapsigargin, an inhibitor of the sarcoplasmic reticulum Ca^{2+} ATPase, was used to deplete Ca^{2+} stores, triggering opening of store-operated channels. When Mn^{2+} and thapsigargin were added together, Mn^{2+} entry was strongly accelerated (star in Fig. 1B) in comparison to basal Mn^{2+} entry $(7.48 \pm 1.03\%/min)$ and

 $21.2 \pm 2.33\%$ /min for Mn²⁺ entry at rest and upon Ca²⁺ store depletion, respectively, Fig. 1B and C). The delayed acceleration of Mn²⁺ entry in Fig. 1B can be explained by the requirement of significant Ca²⁺ store depletion before opening of store-operated channels can occur. As observed with basal Mn²⁺ entry, it was abolished when fibers were treated with the channel blockers Gd³⁺ or BTP2 (2.23 \pm 0.45%/min and 3.9 \pm 1.03%/min for Gd³⁺ and BTP2, respectively, Fig. 1B and C).


Preincubation of dystrophic fibers with AACOCF₃, a PLA₂ inhibitor blocking both Ca^{2+} -dependent and Ca^{2+} -independent PLA₂ [19,20] did not affect basal Mn²⁺ entry (6.9 ± 1.52%/min, Fig. 1A and C), but strongly reduced the enhanced Mn²⁺ entry of thapsigargin-treated fibers (8.97 ± 1.23%/min, Fig. 1B and C). Similar results were obtained when fibers were pretreated with the iPLA₂ specific suicide substrate bromoenol lactone (BEL, Fig. 1C) [19,20]. Altogether, these results indicate that iPLA₂ is responsible for the enhanced Mn²⁺ entry occurring upon Ca²⁺ store depletion, suggesting a specific localization for this enzyme and also that iPLA₂ hydrolysis products are involved in the gating of store-operated channels.

Immuno-localization of iPLA₂ dystrophic fibers

We performed immuno-staining experiments using a specific anti-iPLA₂ antibody and confocal microscopy. Fig. 2 shows a representative confocal section of a dystrophic fiber stained for iPLA₂. When the primary antibody was omitted, no fluorescence was detected, indicating that iPLA₂ staining did not result from non-specific binding of the secondary antibody. In the thin confocal section presented in Fig. 2 (0.5 μ M thickness), iPLA₂ appears to be primarily located in the vicinity of the sarcolemma.

Effect of LPC and arachidonic acid on $[Ca^{2+}]_i$ in dystrophic fibers

iPLA $_2$ are enzymes that catalyze the hydrolysis of fatty acid ester bonds at the second position of diacylglycerophospholipids, leading to the release of arachidonic acid and lysophospholipids [20]. Both lysophospholipids and arachidonic acid metabolites have been shown to be activators of various cationic channels [12–14,21–25]. Recent evidence suggests that lysophospholipids, such as LPC produced by iPLA $_2$, can stimulate opening of cationic channels including store-operated channels [12–14,23–25]. To investigate which of these PLA $_2$ products may be responsible for store-operated channel activation, we tested the effect of external application of LPC and arachidonic acid on dystrophic fibers. External application of LPC triggered slow $[Ca^{2+}]_i$ increases of 72.4 \pm 7.8 nM (Fig. 3A and F) while arachidonic acid had no effect on $[Ca^{2+}]_i$ (n=7, Fig. 3A). LPC-induced $[Ca^{2+}]_i$ increases were strongly reduced by incubating fibers in Ca^{2+} -free solution

Fig. 2. Immuno-localization of iPLA₂ in mdx^{5cv} fibers. Left: Confocal section of a mdx^{5cv} fiber immuno-stained for iPLA₂. Right: when the primary antibody was omitted, no fluorescence was detected (control).

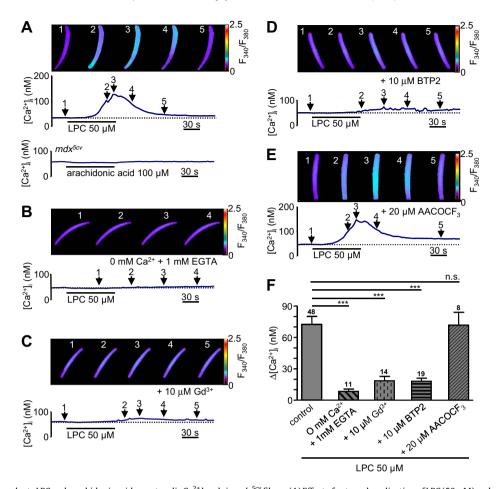
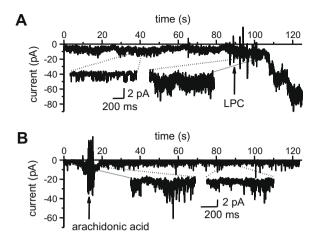


Fig. 3. Effect of the PLA₂ products LPC and arachidonic acid on cytosolic Ca^{2^+} levels in mdx^{5cv} fibers. (A) Effect of external application of LPC (50 μM) and arachidonic acid (100 μM) on $[Ca^{2^+}]_i$ in mdx^{5cv} fibers. Top panel shows time series of pseudocolor F_{340}/F_{380} ratio images corresponding to LPC-induced $[Ca^{2^+}]_i$ increase. (B) Effect of LPC on $[Ca^{2^+}]_i$ in Ca^{2^+} fiber preincubated for 5 min with 10 μM Ca^{3^+} . (D) Effect of LPC on $[Ca^{2^+}]_i$ in a Ca^{3^+} fiber preincubated for 10 min with 10 μM BTP2. (E) Effect of LPC on $[Ca^{2^+}]_i$ in a Ca^{3^+} fiber preincubated for 10 min with 20 μM AACOCF₃. (F) Average values showing the effect of the absence of external Ca^{2^+} , Ca^{3^+} , BTP2 and AACOCF₃ on LPC-induced Ca^{2^+} transients. Numbers of fibers tested (from five Ca^{3^+} mice) are indicated on top of the bars.

 $(8.2 \pm 2.4 \text{ nM}, \text{Fig. 3B and F})$, indicating that the LPC effect on $[\text{Ca}^{2+}]_i$ was mainly due to Ca²⁺ entry through the sarcolemma. Involvement of L-type voltage-gated Ca2+ channels in LPC-induced Ca2+ entry can be discarded as all experiments were performed in the continuous presence of the L-type voltage-gated Ca2+ channel blocker nifedipine (1 μ M). LPC-induced Ca²⁺ entry was significantly reduced by preincubating fibers with either Gd3+ or BTP2 $(18.4 \pm 4.3 \text{ and } 18 \pm 2.9 \text{ nM} \text{ for } \text{Gd}^{3+}\text{-} \text{ and } \text{BTP2-treated fibers,}$ respectively, Fig. 3C, D and F), indicating that LPC-induced Ca²⁺ entry is mainly due to stimulation of cationic channels but not to unspecific effects. Since LPC may increase PLA2 activity in some cases [26], we tested the effect of PLA2 inhibition on LPC-induced Ca²⁺ entry. Incubation of dystrophic fibers with AACOCF₃ did not affect LPC-induced Ca^{2+} entry (71.5 ± 12.5 nM, Fig. 3E and F). To investigate if LPC-induced Ca²⁺ entry could be caused by stimulation of receptors coupled to phospholipase C such as lysophosphatidic acid receptors [27], fibers were pretreated with the phospholipase C inhibitor U73122 [28]. Such pretreatment did not have any inhibitory effect on LPC-induced Ca^{2+} entry (n = 12, not shown), indicating that the main phospholipase C products (inositol 1,4,5-trisphosphate and diacylglycerol) are not involved in the LPC effect.


Effect of LPC and arachidonic acid on Ca²⁺ currents in dystrophic fibers

In order to investigate whether the external nature of application of LPC and arachidonic acid could have affected the action of these agents, we used the patch–clamp technique to measure their effects on Ca^{2+} currents in excised inside-out patches. Fig. 4 shows typical currents elicited by perfusing these patches with bath solution containing either LPC (20 μ M) or arachidonic acid (100 μ M). While LPC reliably stimulated Ca^{2+} currents, significantly augmenting basal activity (n=5 patches, Fig. 4A), arachidonic acid did not produce any noticeable current increase (n=5 patches, Fig. 4B).

Discussion

In this study, we have investigated the role of iPLA₂ and its metabolites in the regulation of cationic channels active at rest and during Ca^{2+} store depletion in dystrophic (mdx^{5cv}) muscle fibers.

Basal and store-operated Mn²⁺ entry were strongly reduced by the general cation channel blocker Gd³⁺ and by BTP2, a compound described as a store-operated channel blocker [18]. This indicates that both basal and the accelerated Mn²⁺ entry triggered by Ca²⁺ store depletion are related to the opening of channels exhibiting similar pharmacology, possibly TRP channels and, more likely Orai1, as described in skeletal muscle [8,10,11]. Inhibition of iPLA₂ activity abolished the accelerated Mn²⁺ entry triggered by Ca²⁺ store depletion, in accordance with our previous study, while basal Mn²⁺ entry was not affected [15]. This indicates that iPLA₂ is causing activation of store-operated Mn²⁺ entry in a specific manner, and therefore that basal divalent cation entry is not under the control of iPLA₂ in dystrophic fibers. Mechanisms linking Ca²⁺ store

Fig. 4. LPC and arachidonic acid effects on Ca²⁺ current in excised inside-out patches. (A) Basal activity, commonly observed in mdv^{Scv} fibers, is significantly augmented upon addition of 20 μM LPC. Insets show an expanded view of the regions of the overall trace indicated by dotted lines on a scale allowing visualizing single channel openings before (left) and after (right) LPC addition. (B) Treatment of the excised patches with 100 μM arachidonic acid does not produce any significant effect. Both panels show typical long-term responses (overall curve) as well as expanded views allowing to distinguish single-channel activity before (left inset) and after (right inset) LPC or arachidonic acid application.

depletion and iPLA₂ stimulation remain elusive, but the sarcoplasmic reticulum Ca²⁺ sensor STIM1 may trigger the production of a yet unknown soluble messenger called Calcium Influx Factor (CIF), which triggers dissociation of the iPLA₂-calmodulin complex, leading to desinhibition of iPLA₂ [12].

The role of $iPLA_2$ in the regulation of store-operated channels suggests a specific localization of $iPLA_2$ in dystrophic fibers. $iPLA_2$ was found to be mainly localized in the vicinity of the sarcolemma, suggesting a close proximity with cationic channels such as store-operated channels, which may be located on the sarcolemma and/or in the T-tubular membranes.

The involvement of iPLA₂ in store-operated Mn²⁺ entry also suggests that a lipid product of iPLA₂ is responsible for the opening of store-operated channels in dystrophic fibers. iPLA2 catalyzes the hydrolysis of fatty acid ester bonds at the second position of diacylglycerophospholipids, leading to the release of arachidonic acid and lysophospholipids [20]. Both lysophospholipids and arachidonic acid metabolites have been shown to be potent activators of channels such as store-operated or TRP/cationic channels [12-14,21–25]. In dystrophic fibers, we only found the PLA₂ product LPC to be effective in triggering Ca²⁺ entry, while arachidonic acid was found to have no noticeable effect on Ca2+ and sarcolemmal channel activity. LPC triggered Ca2+ entry through Gd3+- and BTP2-sensitive channels, demonstrating that LPC-activated channels exhibit similar pharmacology as store-operated channels. LPC-induced Ca²⁺ entry was not affected by PLA₂ inhibition, indicating that LPC acts downstream of iPLA2 and directly activates sarcolemmal channels. Using patch-clamp recording of cation channel activity in inside-out patches, we also demonstrate that LPC but not arachidonic acid activates large macroscopic Ca²⁺ currents, indicating that LPC is a powerful activator of sarcolemmal channels and that it is effective when applied at the inner face of the sarcolemma. This effect of LPC may be related to the direct activation of sarcolemmal channels, or to the modification of the lipid bilayer structure due to increased local LPC concentration, which may be sensed by channels such as TRP channels [23,24].

Altogether, our findings indicate that LPC produced by iPLA₂ plays a major role in the control of Ca²⁺ entry occurring upon Ca²⁺ store depletion in dystrophic fibers, a phenomenon that occurs during muscle activity [15,29]. Enhanced Ca²⁺ entry through cationic channels at rest or stimulated by Ca²⁺ store depletion or

stretch of the sarcolemma is thought to be an important trigger for degeneration of dystrophic muscle, due to the Ca²⁺-dependent activation of proteolytic enzymes [2–5,8]. Therefore, inhibition of iPLA₂, lysophospholipid production or action may be of great benefit to protect dystrophic fibers from excessive Ca²⁺ entry. Moreover, this may also be beneficial in reducing the oxidative stress and inflammation, two phenomena contributing to muscle degeneration that may be enhanced by PLA₂-derived lipids [30,31].

In summary, our results suggest that LPC produced by iPLA₂ may act locally as a messenger for activation of store-operated channels. Upon Ca²⁺ store depletion, increased iPLA₂ expression [15] and activity may lead to increased production of LPC in the vicinity of store-operated channels in dystrophic fibers, causing opening of these channels. As excessive Ca²⁺ influx through such channels is thought to be partly involved in the degeneration of dystrophic muscle, iPLA₂ may constitute a new interesting target for the treatment of DMD.

Acknowledgments

This work was supported by grants from the Swiss National Science Foundation (31-109981.05 and 31-122548.08), the Swiss Foundation for Research on Muscular Diseases, and the "Association Française contre les Myopathies".

References

- [1] D.J. Blake, A. Weir, S.E. Newey, K.E. Davies, Function and genetics of dystrophin and dystrophin-related proteins in muscle, Physiol. Rev. 82 (2002) 291–329.
- [2] P. Gailly, New aspects of calcium signaling in skeletal muscle cells: implications in Duchenne muscular dystrophy, Biochim. Biophys. Acta 1600 (2002) 38-44.
- [3] U.T. Ruegg, J.M. Gillis, Calcium homeostasis in dystrophic muscle, Trends Pharmacol. Sci. 20 (1999) 351–352.
- [4] J.M. Alderton, R.A. Steinhardt, Calcium influx through calcium leak channels is responsible for the elevated levels of calcium-dependent proteolysis in dystrophic myotubes, J. Biol. Chem. 275 (2000) 9452–9460.
 [5] D.G. Allen, N.P. Whitehead, E.W. Yeung, Mechanisms of stretch-induced
- [5] D.G. Allen, N.P. Whitehead, E.W. Yeung, Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes, J. Physiol. 567 (2005) 723–735.
- [6] F. De Backer, C. Vandebrouck, P. Gailly, J.M. Gillis, Long-term study of Ca⁽²⁺⁾ homeostasis and of survival in collagenase-isolated muscle fibres from normal and mdx mice, J. Physiol. 542 (2002) 855–865.
- [7] O. Tutdibi, H. Brinkmeier, R. Rudel, K.J. Fohr, Increased calcium entry into dystrophin-deficient muscle fibres of MDX and ADR-MDX mice is reduced by ion channel blockers, J. Physiol. 515 (1999) 859–868.
- [8] C. Vandebrouck, D. Martin, S.M. Colson-Van, H. Debaix, P. Gailly, Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers, J. Cell Biol. 158 (2002) 1089–1096.
- [9] A. Vandebrouck, T. Ducret, O. Basset, S. Sebille, G. Raymond, U. Ruegg, P. Gailly, C. Cognard, B. Constantin, Regulation of store-operated calcium entries and mitochondrial uptake by minidystrophin expression in cultured myotubes, FASEB J. 20 (2006) 136–138.
- [10] A. Vandebrouck, J. Sabourin, J. Rivet, H. Balghi, S. Sebille, A. Kitzis, G. Raymond, C. Cognard, N. Bourmeyster, B. Constantin, Regulation of capacitative calcium entries by alpha1-syntrophin: association of TRPC1 with dystrophin complex and the PDZ domain of alpha1-syntrophin, FASEB J. 21 (2007) 608-617.
- [11] A.D. Lyfenko, R.T. Dirksen, Differential dependence of store-operated and excitation-coupled Ca²⁺ entry in skeletal muscle on STIM1 and Orai1, J. Physiol. 586 (2008) 4815–4824.
- [12] T. Smani, S.I. Zakharov, P. Csutora, E. Leno, E.S. Trepakova, V.M. Bolotina, A novel mechanism for the store-operated calcium influx pathway, Nat. Cell Biol. 6 (2004) 113–120.
- [13] K. Singaravelu, C. Lohr, J.W. Deitmer, Calcium-independent phospholipase A₍₂₎ mediates store-operated calcium entry in rat cerebellar granule cells, Cerebellum 7 (2008) 467–481.
- [14] F.X. Boittin, F. Gribi, K. Serir, J.L. Beny, Ca²⁺-independent PLA₂ controls endothelial store-operated Ca²⁺ entry and vascular tone in intact aorta, Am. J. Physiol. Heart Circ. Physiol. 295 (2008) H2466–H2474.
- [15] F.X. Boittin, O. Petermann, C. Hirn, P. Mittaud, O.M. Dorchies, E. Roulet, U.T. Ruegg, Ca²⁺-independent phospholipase A₂ enhances store-operated Ca²⁺ entry in dystrophic skeletal muscle fibers, J. Cell Sci. 119 (2006) 3733–3742.
- [16] A. Cheung, J.A. Dantzig, S. Hollingworth, S.M. Baylor, Y.E. Goldman, T.J. Mitchison, A.F. Straight, A small-molecule inhibitor of skeletal muscle myosin II. Nat. Cell Biol. 4 (2002) 83–88.
- [17] T.M. Suchyna, F. Sachs, Mechanosensitive channel properties and membrane mechanics in mouse dystrophic myotubes, J. Physiol. 581 (2007) 369–387.

- [18] L.P. He, T. Hewavitharana, J. Soboloff, M.A. Spassova, D.L. Gill, A functional link between store-operated and TRPC channels revealed by the 3,5-bis(trifluoromethyl)pyrazole derivative BTP2, J. Biol. Chem. 280 (2005) 10997-11006.
- [19] E.J. Ackermann, K. Conde-Frieboes, E.A. Dennis, Inhibition of macrophage $Ca^{(2^+)}$ -independent phospholipase A_2 by bromoenol lactone and trifluoromethyl ketones, J. Biol. Chem. 270 (1995) 445–450.
- [20] S. Chakraborti, Phospholipase A(2) isoforms: a perspective, Cell Signal. 15 (2003) 637-665.
- [21] H. Watanabe, J. Vriens, J. Prenen, G. Droogmans, T. Voets, B. Nilius, Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels, Nature 424 (2003) 434-438.
- [22] B.A. Rzigalinski, K.A. Willoughby, S.W. Hoffman, J.R. Falck, E.F. Ellis, Calcium influx factor, further evidence it is 5,6-epoxyeicosatrienoic acid, J. Biol. Chem. 274 (1999) 175-182.
- P.K. Flemming, A.M. Dedman, S.Z. Xu, J. Li, F. Zeng, J. Naylor, C.D. Benham, A.N. Bateson, K. Muraki, D.J. Beech, Sensing of lysophospholipids by TRPC5 calcium channel, J. Biol. Chem. 281 (2006) 4977-4982.
- [24] P. Chaudhuri, S.M. Colles, M. Bhat, D.R. Van Wagoner, L. Birnbaumer, L.M. Graham, Elucidation of a TRPC6-TRPC5 channel cascade that restricts endothelial cell movement, Mol. Biol. Cell 19 (2008) 3203-3211.

- [25] F. Vanden Abeele, A. Zholos, G. Bidaux, Y. Shuba, S. Thebault, B. Beck, M. Flourakis, Y. Panchin, R. Skryma, N. Prevarskaya, Ca²⁺-independent phospholipase A₂-dependent gating of TRPM8 by lysophospholipids, J. Biol. Chem. 281 (2006) 40174-40182.
- [26] J.T. Wong, K. Tran, G.N. Pierce, A.C. Chan, K. O, P.C. Choy, Lysophosphatidylcholine stimulates the release of arachidonic acid in human endothelial cells, J. Biol. Chem. 273 (1998) 6830-6836.
- J.J. Contos, I. Ishii, J. Chun, Lysophosphatidic acid receptors, Mol. Pharmacol. 58 (2000) 1188-1196.
- [28] J.H. Hong, S.J. Moon, H.M. Byun, M.S. Kim, H. Jo, Y.S. Bae, S.I. Lee, M.D. Bootman, H.L. Roderick, D.M. Shin, J.T. Seo, Critical role of phospholipase Cgamma1 in the generation of H2O2-evoked [Ca2+]i oscillations in cultured rat cortical astrocytes, J. Biol. Chem. 281 (2006) 13057–13067. [29] B.S. Launikonis, E. Rios, Store-operated Ca²⁺ entry during intracellular Ca²⁺
- release in mammalian skeletal muscle, J. Physiol. 583 (2007) 81-97.
- [30] A.A. Farooqui, W.Y. Ong, L.A. Horrocks, Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders, Pharmacol. Rev. 58 (2006) 591-620.
- [31] M. Lindahl, E. Backman, K.G. Henriksson, J.R. Gorospe, E.P. Hoffman, Phospholipase A2 activity in dystrophinopathies, Neuromuscul. Disord. 5 (1995) 193–199.